Effects of Length and Inclination of Implants on Terminal Abutment Teeth and Implants in Mandibular CL1 Removable Partial Denture Assessed by Three-Dimensional Finite Element Analysis

نویسندگان

  • Amir Fayaz
  • Alahyar Geramy
  • Yeganeh Memari
  • Zahra Rahmani
چکیده

OBJECTIVES This study sought to assess the effects of length and inclination of implants on stress distribution in an implant and terminal abutment teeth in an implant assisted-removable partial denture (RPD) using three-dimensional (3D) finite element analysis (FEA). MATERIALS AND METHODS In this in vitro study, a 3D finite element model of a partially dentate mandible with a distal extension RPD (DERPD) and dental implants was designed to analyze stress distribution in bone around terminal abutment teeth (first premolar) and implants with different lengths (7 and 10 mm) and angles (0°, 10° and 15°). RESULTS Stress in the periodontal ligament (PDL) of the first premolar teeth ranged between 0.133 MPa in 10mm implants with 15° angle and 0.248 MPa in 7mm implants with 0° angle. The minimum stress was noted in implants with 10mm length with 0° angle (19.33 MPa) while maximum stress (25.78 MPa) was found in implants with 10mm length and 15° angle. In implants with 7 mm length, with an increase in implant angle, the stress on implants gradually increased. In implants with 10 mm length, increasing the implant angle gradually increased the stress on implants. CONCLUSION Not only the length of implant but also the angle of implantation are important to minimize stress on implants. The results showed that vertical implant placement results in lower stress on implants and by increasing the angle, distribution of stress gradually increases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Abutment Height Difference on Stress Distribution in Mandibular Overdentures: A Three-Dimensional Finite Element Analysis

Background and Aim: Implant-supported overdentures are a treatment option for edentulous patients. One of the important factors in determining the prognosis of overdenture treatment is to control the distribution of stress in the implant-bone and attachment complex. This study assessed the effect of implant abutment height difference on stress distribution in mandibular overdentures. Materials...

متن کامل

Stress Distribution in Natural Tooth and Implant Supported Removable Partial Denture with Different Attachment Types: A Photoelastic Analysis

Background and Aim: Different attachment designs have been developed to connect implant to natural teeth in partial dentures; however, adequate studies have not been performed to determine stress distribution patterns in these designs. The present study aimed to assess stress distribution patterns in natural tooth and implant supported removable partial denture with different attachment designs...

متن کامل

Effect of the Number of Implants on Stress Distribution of Anterior Implant-Supported Fixed Prostheses Combined with a Removable Partial Denture: A Finite Element Analysis

OBJECTIVE The main goal of this study was to evaluate differences in stress distribution relevant to the number of implants under an anterior bridge when combined with a removable partial denture in the posterior region. MATERIALS AND METHODS Four three-dimensional finite element models (3D FEM) were designed from a mandible containing an implant-supported bridge extending between canines, an...

متن کامل

Investigating the Stress Distribution Applied to Edentulous Ridge from Polyamide and Cobalt-Chrome Removable-Partial-Dentures using Three-Dimensional Finite-Element-Analysis

Abstract: Objective: The objective of this study was to compare the Von-Mises-stress (VMS) distribution applied to the edentulous ridges from a Polyamide RPD (PRPD) with those from a Cobalt-Chrome RPD (CCRPD). Materials and Methods: A patient with mandibular Kennedy Class I, Mod I was selected. The patientchr(chr('39')39chr('39'))s CBCT was cut off at 1 mm sections from the axial dimension. ...

متن کامل

Effect of Abutment Angulation and Material on Stress and Strain Distributions in Premaxillary Bone: A Three-Dimensional Finite Element Analysis

Background and Aim: Dental implants with angled abutments are often inserted in the anterior maxillary region due to the status of the residual ridge and aesthetic considerations. The purpose of this study was to assess stress and strain distributions in the premaxillary bone around dental implants by means of finite element analysis (FEA). Materials and Methods: Four three-dimensional (3D) fi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2015